Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Health Policy ; 126(1): 7-15, 2022 01.
Article in English | MEDLINE | ID: covidwho-1549804

ABSTRACT

The COVID-19 pandemic triggered an economic shock just ten years after the shock of the 2008 global financial crisis. Economic shocks are a challenge for health systems because they reduce government revenue at the same time as they increase the need for publicly financed health care. This article explores the resilience of health financing policy to economic shocks by reviewing policy responses to the financial crisis and COVID-19 in Europe. It finds that some health systems were weakened by responses to the 2008 crisis. Responses to the pandemic show evidence of lessons learnt from the earlier crisis but also reveal weaknesses in health financing policy that limit national preparedness to face economic shocks, particularly in countries with social health insurance schemes. These weaknesses highlight where permanent changes are needed to strengthen resilience in future: countries will have to find ways to reduce cyclicality in coverage policy and revenue-raising; increase the priority given to health in allocating public spending; and ensure that resources are used to meet equity and efficiency goals. Although many health systems are likely to face budgetary pressure in the years ahead, the experience of the 2008 crisis shows that austerity is not an option because it undermines resilience and progress towards universal health coverage.


Subject(s)
COVID-19 , Healthcare Financing , Europe , Health Policy , Humans , Pandemics/prevention & control , SARS-CoV-2
2.
ACS Omega ; 6(1): 85-102, 2021 Jan 12.
Article in English | MEDLINE | ID: covidwho-1028803

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a global health crisis caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and there is a critical need to produce large quantities of high-quality SARS-CoV-2 Spike (S) protein for use in both clinical and basic science settings. To address this need, we have evaluated the expression and purification of two previously reported S protein constructs in Expi293F and ExpiCHO-S cells, two different cell lines selected for increased protein expression. We show that ExpiCHO-S cells produce enhanced yields of both SARS-CoV-2 S proteins. Biochemical, biophysical, and structural (cryo-EM) characterizations of the SARS-CoV-2 S proteins produced in both cell lines demonstrate that the reported purification strategy yields high-quality S protein (nonaggregated, uniform material with appropriate biochemical and biophysical properties), and analysis of 20 deposited S protein cryo-EM structures reveals conformation plasticity in the region composed of amino acids 614-642 and 828-854. Importantly, we show that multiple preparations of these two recombinant S proteins from either cell line exhibit identical behavior in two different serology assays. We also evaluate the specificity of S protein-mediated host cell binding by examining interactions with proposed binding partners in the human secretome and report no novel binding partners and notably fail to validate the Spike:CD147 interaction. In addition, the antigenicity of these proteins is demonstrated by standard ELISAs and in a flexible protein microarray format. Collectively, we establish an array of metrics for ensuring the production of high-quality S protein to support clinical, biological, biochemical, structural, and mechanistic studies to combat the global pandemic caused by SARS-CoV-2.

3.
Nanoscale ; 12(47): 23959-23966, 2020 Dec 21.
Article in English | MEDLINE | ID: covidwho-947558

ABSTRACT

Lipid nanoparticle (LNP) formulations of nucleic acid are leading vaccine candidates for COVID-19, and enabled the first approved RNAi therapeutic, Onpattro. LNPs are composed of ionizable cationic lipids, phosphatidylcholine, cholesterol, and polyethylene glycol (PEG)-lipids, and are produced using rapid-mixing techniques. These procedures involve dissolution of the lipid components in an organic phase and the nucleic acid in an acidic aqueous buffer (pH 4). These solutions are then combined using a continuous mixing device such as a T-mixer or microfluidic device. In this mixing step, particle formation and nucleic acid entrapment occur. Previous work from our group has shown that, in the absence of nucleic acid, the particles formed at pH 4 are vesicular in structure, a portion of these particles are converted to electron-dense structures in the presence of nucleic acid, and the proportion of electron-dense structures increases with nucleic acid content. What remained unclear from previous work was the mechanism by which vesicles form electron-dense structures. In this study, we use cryogenic transmission electron microscopy and dynamic light scattering to show that efficient siRNA entrapment occurs in the absence of ethanol (contrary to the established paradigm), and suggest that nucleic acid entrapment occurs through inversion of preformed vesicles. We also leverage this phenomenon to show that specialized mixers are not required for siRNA entrapment, and that preformed particles at pH 4 can be used for in vitro transfection.


Subject(s)
COVID-19 , Lab-On-A-Chip Devices , Lipids , Nanoparticles , RNA, Small Interfering , SARS-CoV-2 , Animals , Cell Line , Hydrogen-Ion Concentration , Lipids/chemistry , Lipids/pharmacology , Mice , Nanoparticles/chemistry , Nanoparticles/therapeutic use , RNA, Small Interfering/chemistry , RNA, Small Interfering/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL